Comparison of deeply buried paleoregolith profiles, Norwegian North Sea, with outcrops from southern Sweden and Georgia, USA — Implications for petroleum exploration

Lars Riber, Henning Dypvik, Ronald Sørlie, Syed Asmar Aal-E-Muhammad Naqvi, Kristian Stangvik, Nikolas Oberhardt, Paul A. Schroeder

A R T I C L E I N F O

Article history:
Received 8 February 2016
Received in revised form 24 January 2017
Accepted 31 January 2017
Available online 3 February 2017

Keywords:
Paleoregolith
Mesozoic weathering
Utsira High
North Sea
Petroleum reservoir
Surface paleoregolith

A B S T R A C T

For the first time on the Norwegian Continental Shelf, deeply buried paleoregolith profiles have been identified as part of the petroleum reservoirs in recently discovered oil fields on the Utsira High, Norwegian North Sea. Reservoir properties (porosity and permeability) in the granitic basement on the Utsira High are mainly the result of physical and chemical alteration of the rock occurring in the near-surface environment during sub-aerial exposure of the high in the Mesozoic. Evaluating the reservoir potential of altered basement rocks requires a different approach than in conventional petroleum exploration. In this paper, macroscopic, mineralogical and micromorphological alteration features observed in two deeply buried paleoregolith profiles are compared with surface paleoregoliths from Ivö Klack, Sweden and Georgia, USA. The paleoregolith profiles are subdivided into specific weathering facies (altered coherent rock facies, saprock facies and saprolite facies) based on the rock fabric and mechanical strength. The reservoir potential of each weathering facies is controlled by the type and degree of alteration. In the altered coherent rock facies, porosity and permeability is mainly controlled by joints and microfractures that developed prior to subaerial exposure of the granitic pluton. In the saprock facies, intensified chemical dissolution of plagioclase enhanced porosity and the development of mesostructures improved the connectivity between pores. In the saprolite facies, progressive dissolution of plagioclase creates porosity, but the precipitation of clays within voids and mesostructures has a destructive effect on the overall reservoir properties. The deeply buried paleoregolith profiles from the Utsira High display comparable macroscopic, mineralogical and micromorphological alteration features to what was observed in surface paleoregoliths from Ivö Klack and Georgia. Outcrop studies may therefore be an important tool when evaluating the reservoir potential in subsurface paleoregoliths.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

On the Utsira High, Norwegian North Sea (Fig. 1A) hydrocarbon reservoirs were recently discovered in deeply buried paleoregolith profiles (Riber et al., 2015; Sørlie et al., 2014, 2016). The discovery represents the first time altered and fractured basement rocks are identified as petroleum reservoirs on the Norwegian Continental Shelf. The present paper extends two previous studies from the area (Riber et al., 2015, 2016). By comparing deeply buried paleoregoliths from the Utsira High with outcrops from Georgia, USA (Fig. 2A) and Ivö Klack, Sweden (Fig. 2B), this study will attempt to evaluate how physiochemical alteration in the Critical Zone affected the reservoir quality in the granitic basement rocks on the Utsira High.

Studies of outcrops are common and often needed when constructing subsurface models of conventional siliciclastic and bioclastic petroleum reservoirs (Grammer et al., 2004) as drill cores are normally far between and only provide limited three-dimensional resolution. Suitable outcrops for comparison were identified from Georgia, USA (Fig. 2A), Ivö Klack, Sweden (Fig. 2B), and Bornholm, Denmark (Fig. 2B). The present paper will compare the results from the Utsira High with the results from Georgia and Ivö Klack, while comparable results from Bornholm, Denmark are presented in an accompanying paper (Tan et al., 2017). Recent H-O isotope studies from kaolins in the Cenozoic weathering sections from Georgia, USA and the Mesozoic weathering sections from Ivö Klack and Bornholm, suggests subaerial formation under humid and subtropical conditions (Gilg et al., 2013), that may...
have been comparable to Mesozoic northern North Sea climatic conditions (Lidmar-Bergström, 1982; Hallam et al., 1993; Abbink et al., 2001; Vajda and Wigforss-Lange, 2009; Nystuen et al., 2014).

In the first comprehensive study of altered basement rocks on the Norwegian Continental shelf, Riber et al. (2015) found that reservoir quality in crystalline rocks from 18 different wells on the Utsira High (Fig. 1C) varied greatly as a function of type and degree of alteration. Based on detailed clay mineralogical, petrographical and geochemical studies Riber et al. (2016) discussed alteration features resulting from near-surface processes in two-well developed paleoregolith profiles (wells 16/3-4 and 16/3-6) (Fig. 1C). The minimal postweathering alteration (diagenetic reactions) observed in the paleoregolith profile in well 16/3-4 (Riber et al., 2016) makes the paleoregolith profile from this well suitable for comparison with a deeply buried paleoregolith profile in well 16/3-6 (Fig. 1C) located about 1 km north of 16/3-4, and surface paleoregolith profiles from Georgia, USA (Fig. 2A) and Ivö Klack, southern Sweden (Fig. 2B).

The coupled near-surface interactions of biochemical and physical processes in the Critical Zone are responsible for the alteration of solid rock to regolith (weathering profile) and soil (Brantley et al., 2006, 2007; Buss et al., 2008; Lin, 2010). Generally a regolith may be divided into three weathering facies based on the degree of recognizable primary rock structures and the mechanical rock strength: the altered coherent rock facies, saprock facies, and saprolite facies (Velde and Meunier, 2008). When considering the regolith as a medium through which fluids can migrate and be stored, the recognition of weathering facies is of great importance as each facies displays contrasting hydraulic properties (porosity and permeability) (O’Brien and Buol, 1984; Acworth, 1987; Schoeneberger and Amoozegar, 1990; Wright and Burgess, 1992; Driese et al., 2001; Négrel, 2006; Velde and Meunier, 2008; Pagliai and Kutilek, 2008; Zauyah et al., 2010). The porosity and permeability in the weathered rock are mostly controlled by fractures and voids. Fractures are particularly important as pathways for the ingress of formation waters and the voids are created from the dissolution of labile minerals and become more important with progressive chemical attack (Acworth, 1987; Wright, 1992; Nelson, 2001; Velde and Meunier, 2008; Zauyah et al., 2010; Borrelli et al., 2012; Bazilevskaya et al., 2013). With advanced chemical weathering, the neoformation of phyllosilicates and hydroxides will clog previously formed voids and fractures and hence have a negative impact on reservoir quality (Acworth, 1987; Driese et al., 2001; Meunier, 2005; Pagliai and Kutilek, 2008; Zauyah et al., 2010).

Most soils and regoliths are the products of multiple environments ranging over pedogenic time and may therefore be viewed as polygenetic (Molina et al., 1991; Richter and Yaalon, 2012). Furthermore, paleoregoliths are defined as weathering formations that were produced in a geomorphologic and/or climatic environment different from the present one (Battiau-Queney, 1996). In this context both the deeply buried weathering profiles from the Utsira High, and surface weathering sections from Georgia (Schroeder et al., 1997; Schroeder...
and West, 2005) and Ivö Klack (Lidmar-Bergström, 1982, 1993, 1995, 1999; Lidmar-Bergström et al., 1997; Ahlberg et al., 2003). Recognition of deeply buried paleoregoliths is complicated by the possibility of postweathering diagenetic or hydrothermal alteration (Nesbitt and Young, 1989; Rainbird et al., 1990; Ziegler and Longstaffe, 2000; Retallack, 2001; Driese et al., 2007; Srivastava and Sauer, 2014; Liivamägi et al., 2015). Rock materials associated with basement unconformities are particularly vulnerable to additional alteration, produced by increased permeability and reactivity of the weathered material relative to the fresh rock (Sutton and Maynard, 1992, 1993; Sutton and Maynard, 1996). Furthermore, diagnostic identification of paleowettering profiles ideally requires the identification of pedogen-ic features, but paleoregoliths have low potential of preservation and the overlying soil horizons are commonly absent (Migóh, 1957; Bahlburg and Dobrzinski, 2011). Regolith profiles developed in the up-lands are often eroded and reworked, and only the profiles developed in the lowlands will normally be preserved in the stratigraphic record (Lidmar-Bergström, 1995; Thiry et al., 1999; Sheldon and Tabor, 2009).

The present study compares macroscopic (rock fabric and mechanical strength), mineralogical (whole rock and clay), and micromorphological alteration features observed in deeply buried paleoregoliths from the Utsira High with surface paleoregolith profiles from Ivö Klack, Sweden and Georgia, USA. The aim of this paper is to show the applicability of outcrops when evaluating how reservoir properties were formed and preserved in the Critical Zone in the deeply buried paleoregolith profiles from the Utsira High. The present study will test if the same mineralogical and petrographical criteria may be used to distinguish specific weathering facies in both deeply buried and surface paleoregolith profiles, and relate the weathering facies to reservoir properties (porosity and permeability). If successful, this method may increase the predictability of finding areas with better reservoir potential in future drilling campaigns.

2. Geological background

The Utsira High, a Silurian–Devonian batholith (Slagstad et al., 2011; Lundmark et al., 2013) is currently located at about 2 km depth (Ziegler, 1992) (Fig. 1B) but the granitic basement is believed to have been close to the surface from pre Permain times until transgression was completed in early Cretaceous (Vail et al., 1977; Steel and Rysted, 1990; Ziegler, 1992; Lervik, 2006; McKie and Williams, 2009; Srölie et al., 2014; Ksienzyk et al., 2013, 2016). Subaerial exposure and weathering of the granitic basement of the Utsira High in the Permain is indicated by the presence of weathered granitic clasts in Permo-Trias-sic alluvial fan deposits in half grabens on the Haugaland high (Fig. 1C) (Selvikvåg, 2012; Asbjørnsen, 2015; Srölie et al., 2016). Recent K-Ar dat-ing of illitic clays from paleoregolith material from the area suggests a late Triassic age of formation (Fredin et al., 2014; Fredin pers. comm. 2015). Uncertainties whether the K-Ar ages represent the final weathering episode exist, however, as Riber et al. (2016) could not as-certain the origin of illitic clays in the paleoregolith profiles.

Continuation of subaerial exposure during the Jurassic was promoted by thermal doming of the central North Sea region prior to Upper Ju-rassic rifting (Vail et al., 1977; Ziegler, 1992) constantly introducing fresh rock material to the "weathering factory" (Brantley et al., 2007). The presence of granitic rock clasts and diverse Nd-isotope signatures in sub-lithic to lithic Jurassic arenites from the Avaldsnes high (Fig. 1C) (Sölie et al., 2014) indicate a constant influx of material from nearby sources. Similarly, granitic clasts with weathering rinds were ob-served in immature shallow marine sandstones of Upper Jurassic age, resting on the altered basement in wells on the Avaldsnes high, including the two wells presented in this study (Riber et al., 2015), and in nearby catchments (Sölie et al., 2014). Deep weathering on the Utsira High during the Mesozoic was likely the western continuation of the time-equivalent paleosurface and associated regoliths onshore Norway (Roaldset et al., 1982; Roaldset et al., 1993; Olesen et al., 2006; Olesen et al., 2013) and southern Sweden and Denmark (Lidmar-Bergström, 1982, 1993, 1995; Lidmar-Bergström et al., 1997; Ahlberg et al., 2003). Cessation of subaerial exposure of the Utsira High coincided with the end of the rifting episode by early Cretaceous followed by passive ther-mal subsidence (Ziegler, 1992; Nettvedt et al., 2008) and was associated with the deposition of shallow marine sediments from Upper Jurassic–early Cretaceous across the high (Riber et al., 2015).

3. Field work and analytical methods

Geological analyses and sampling of wells 16/3-4 and 16/3-6 from the Utsira High (Fig. 3) were carried out during several visits at the premises of Weatherford Laboratories, Sandnes from 2012 to 2016. Two complete weathering profiles and overlying soil horizons from northeastern Georgia, USA (Figs. 4A–B), were sampled and studied during field work in the winter 2014 and parts of the results were presented in Stangvik (2015). The profile from Ivö Klack, Sweden (Fig. 4C) was studied during field work in the fall of 2011 and 2012 and the results are partly presented in Naqvi (2013) and Oberhardt (2013). From all localities the mechanical properties of the rock were noted according to a modified version of the classification proposed by the International Society for Rock Mechanics Commission on
Standardization of Laboratory and Field Tests (ISRM) (1978). The classification uses a scale from W1–W5, where W1 (fresh): no visible signs of material alteration, W2 (slightly altered): discoloration of discontinuity surfaces, W3 (moderately altered): less than half of the rock material is decomposed, W4 (highly altered): more than half of the rock material is decomposed and, W5 (completely altered): all rock is decomposed, but original rock structure is still largely intact.

The classification scale from W1–W5 forms the basis for subdividing regolith profiles into three weathering facies: in the altered coherent rock facies, the original structures are perfectly maintained and only minor alteration of primary minerals has occurred. The saprock facies still displays the original rock structure but the mechanical strength of the rock has been reduced due to dissolution of primary minerals. The most altered part of the regolith, the saprolite facies, is a friable rock that still retains rock fabric but contains abundant altered primary and secondary minerals. The saprolite gradually loses its original lithic fabric to form soil material towards the surface (Velde and Meunier, 2008; Zauyah et al., 2010).

Whole rock and clay mineralogical studies of the five paleoregolith profiles are based on XRD analyses. XRD analyses were carried out in the Department of Geosciences, University of Oslo on a Bruker D8 ADVANCE (40 kV and 40 mA) diffractometer with Lynxeye 1-dimensional position sensitive detector (PSD), using CuKα radiation. Micronized powder specimens were prepared as randomly oriented bulk samples by the front-loading procedure (Moore and Reynolds, 1997) and analyzed by counting for 0.3 s at steps of 0.01° 2θ from 2 to 65° 2θ. The Rietveld method, using the entire peak profile (Rietveld, 1969), is applied for quantification of mineral abundances using Siroquant V4 (by Sietronics) (Taylor, 1991). The quantification setup follows the five stage procedure suggested by Hillier (2000), with an additional sixth stage based on six cycles of orientation with a damping factor of 0.2.

The clay (<2 μm) fraction was extracted from the whole rock by gravity settling (Moore and Reynolds, 1997). Oriented aggregate mounts were prepared using the Millipore filter transfer method (Moore and Reynolds, 1997) and analyzed after four treatments: air-dried, treated with ethylene glycol (EG) vapor for 24 h, heated at 350 °C for 1 h, and heated at 550 °C for 1 h. XRD data from the <2 μm fraction were recorded by counting for 0.3 s at steps of 0.01° 2θ from 2 to 35° 2θ. In addition, handpicked biotite grains were crushed and analyzed by XRD separately. Further clay analyses were undertaken with NewMod II, a program designed for simulating one-dimensional oriented aggregate XRD patterns of interstratified clay minerals (Reynolds and Reynolds, 2012).

Standard clay mineral identification of randomly interstratified illite-smectite (R0 I-S), fine-grained mica and illite (I + M), kaolinite, chlorite, vermiculite and hydrobiotite was carried out according to procedures proposed by Moore and Reynolds (1997).

Near-surface chemical alteration trends can be presented in ternary diagrams displaying quartz (resistant to chemical alteration), K-feldspar (semi-resistant to chemical alteration), plagioclase (susceptible to chemical alteration) (Goldich, 1938; Krauskopf and Bird, 1995; Berner and Berner, 2012). On the Qz (quartz)–Pl (plagioclase)–Kfs (K-feldspar) diagram, initial alteration trends will follow the line subparallel to the PI-Qz line as long as plagioclase dissolution is dominant, and then approach the Qz apex when K-feldspar dissolution commences. The plagioclase (Pl)/(quartz (Qz) + plagioclase (Pl)) ratio represents the abundance of a resistant mineral (Qz) to that more susceptible to alteration (Pl) and was used as a general indicator of weathering.
Micromorphological alteration features were studied on polished thin sections impregnated with blue epoxy with a Nikon Labophot-Pol petrographic microscope and SEM-EDS (JEOL JSM-6460LV, with a LINK INCA Energy 300 (EDS)) with detectors for secondary-electron images (SEI) and backscattered electron images (BSE).

4. Results

4.1. Utsira High, Norwegian North Sea

The Utsira High is an intrabasinal structural high forming the eastern flank of the Southern Viking Graben and bounded to the east by the Stord Basin (Ziegler, 1992) (Fig. 1). The southern part of the high is informally divided into an eastern structural segment, the Avaldsnes high, and a western, Haugaland high, separated by the Augvald graben (Riber et al., 2015) (Fig. 1C). Well 16/3-4 is located about 900 m east of the Augvald graben, and 16/3-6 is located about 1 km further north and about 1300 m inland from the edge of the graben (Fig. 1C). Protolith compositions from the two paleoregolith profiles are presented in Table 1.

In well 16/3-4 the highly jointed interval from the base of the core up to the gap at level 1955 m is classified as W1–W2, and comprises the altered coherent facies (Table 2, Figs. 3A and 5A). In the altered coherent rock facies biotite alteration is characterized by opening of the mica grains along edges, perpendicular to cleavage. Intragranular microporosity is created by incipient dissolution of the calcic cores of zoned plagioclase crystals (Figs. 6A and 7A). The saprock facies represents the interval from 1946.5 to 1944.25 m (Fig. 3A), as the rock displays decay of mechanical strength (W3–W4) and rounded fracture planes (Table 2, Fig. 5B), increased dissolution of plagioclase (Figs. 6C and 7C), pseudomorphic kaolinitization of biotite (Fig. 6C) and development of partly open mesofractures (Figs. 6C and 7C). The transition to

![Fig. 4](https://example.com/fig4.png)

Fig. 4. Sketch logs, Pr(Qz + Pl) ratios, and clay mineralogy from surface paleoregolith profiles. Dotted line represents Pr/(Pl + Qz) ratio in protolith. A) Keystone Blue quarry. B) Sparta quarry. C) Ivö Klack. Abbreviations: ACR = altered coherent rock facies, Qz = quartz, Pl = plagioclase.
the saprolite facies was observed at 1944.25 m (Fig. 3A) where the granite appears friable (W4–W5) (Fig. 5E) and secondary clay minerals are abundant (Table 2, Figs. 6E and 7E). The pervasive chemical dissolution of plagioclase and accompanying kaolinization advances upwards, resulting in the reduction of plagioclase relative to quartz by about 50% in the saprolite compared to the protolith (Riber et al., 2016) (Figs. 3A and 8). The precipitation of kaolinitic clays within dissolution voids and along mesofractures reduces the connectivity between pores (Figs. 3A and 8). In addition, Riber et al. (2016) observed brownish clays within mesofractures in the uppermost saprolite samples in 16/3-4 that may represent illuviated pedogenic material from above. The clay mineral assemblage changes from R0 I-S (with about 75–80% expandable layers) and well-ordered, vermiculite kaolinite dominating the altered coherent rock facies, to a disordered, platy, and massive kaolinite-dominated saprock and saprolite facies (Riber et al., 2016) (Fig. 3A). Minute pyrite inclusions were observed within splayed biotite grains in the saprolite facies.

The highly jointed paleogeolith profile in well 16/3-6 is classified as altered coherent rock facies (Fig. 3B) because the rock displays only minor reduction of mechanical strength (W1–W2) (Table 2), and the Pl/(Qz + Pl) ratio throughout the paleogeolith interval show only minor variations compared to protolith composition (Fig. 3B). Exceptions are close to open joints, around 1965 m, where the rock appears friable (W4), displays increased Pl/(Qz + Pl) ratios (Fig. 3B) and more pronounced chemical alteration on the Qz–Pl–Kfs diagram (Fig. 8). I-S (with 80–90% expandable layers) dominates the clay fraction throughout the paleogeolith interval, with subordinate kaolinite (1–10%), and traces of ilmenite and chlorite (Fig. 3B). Microfractures, crossing grain boundaries, were observed in connection with initial intra-granular dissolution of plagioclase (Fig. 7B). Biotite alteration is indicated by splayed wafers observed under the SEM. In addition XRD analysis of handpicked biotite grains shows a reflection around 10.5 Å that did not expand upon ethylene glycolation and was destroyed after the last heat treatment. The reflection around 10.5 Å is interpreted to represent the presence of interstratified biotite-vermiculite. Similar to 16/3-4, pyrite inclusions were also observed within altered biotite in 16/3-6.

4.2. Georgia, USA

In the southeastern United States the Mesozoic and Cenozoic Coastal Plain is delineated along the Fall Line that separates it at the surface from a large plateau region dominated by igneous and metamorphic rocks, known as the Piedmont (Markewich et al., 1990) (Fig. 2A). Two deeply weathered profiles (from fresh rock to the soil) were studied, from the Keystone Blue quarry and the Sparta quarry (Table 1, Fig. 4A–B).

The studied weathering sections from the Keystone Blue and Sparta quarries represent the transition between the altered coherent rock and saprock facies, through the saprolite facies, and grading upwards to the soil horizons (Table 2, Fig. 4A–B). Protolith samples from the Elberton and Sparta granites were collected from exposed fresh granite (W1) deeper down in the quarries and both classify as one-mica (biotite) medium-grained monzogranite (Stangvik, 2015) (Table 1). The granites in both sections are jointed, but are more pronounced in the Sparta profile, forming well-defined rectangular granitic blocks (Fig. 5B).

The altered coherent rock facies (Fig. 4A–B) comprises rocks that are classified from W1–W3 on the weathering scale. In the field, alteration in the altered coherent rock facies is restricted to open joints where oxidation of Fe-rich minerals and incipient hydrolysis are indicated by reddish color. In samples from the altered coherent rock–saprock facies vermiculite kaolinite and R0-I-S, with 95% expandable layers were identified in XRD (Fig. 4A–B) and observed under the SEM within intragranular micropores in plagioclase grains. Biotite is commonly relatively unaltered, but incipient alteration is indicated by fan or splay development along edges and by the identification of interstratified biotite-vermiculite in XRD.

The saprock facies was recognized in the field by the appearance of corestones with rounded edges and friable exfoliation shells, separated by a thin zone of saprolitic material (Fig. 5D). The saprock exhibits reduced mechanical strength, up to W4 on the weathering scale, and the development of mesofractures and dissolution voids after altered plagioclase was observed under the optical microscope (Table 2, Figs. 5D and 7D). In the Keystone Blue profile gibbsite is enriched in the clay fraction from the saprolitic material between corestones (Stangvik, 2015) (Fig. 4A). Samples from the rim of the feature and towards the coherent part of the corestones in the Sparta profile demonstrate a stepwise inward reduction of kaolinite and increase in I-S, suggesting a compositional change similar to the altered coherent rock (Fig. 4B).

The saprock–saprolite boundary facies could be observed in the field as a decay of mechanical rock strength, where most samples are classified as W5 on the weathering scale (Table 2, Fig. 5D). The boundary is characterized mineralogically by a sudden reduction of plagioclase relative to quartz and concomitant increase in kaolin (Fig. 7E), compared to the saprock facies (Fig. 4A–B). In the saprock facies from the Keystone Blue profile the outline of original corestones is preserved but the rock material is totally disintegrated, as is the surrounding rock (Fig. 5F). The lower part of the saprolite facies in the Sparta section is characterized by a 1 m thick reddish layer where iron oxides were identified, associated with altered biotite (Stangvik, 2015). Under the SEM, kaolin displays elongated, tubular morphologies similar to halloysite.
Table 2
Summary of macroscopic (W1–W5), mineralogical (Pl/(Qz + Pl)) and clay, micromorphological alteration features for each weathering facies identified from all five paleoregolith profiles. In addition the most important factors controlling reservoir properties for each weathering facies are listed.

<table>
<thead>
<tr>
<th>Weathering facies</th>
<th>Interval (m)</th>
<th>W1–W5</th>
<th>Pl/(Qz + Pl)</th>
<th>Clay mineralogy</th>
<th>Micromorphology</th>
<th>Reservoir properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saprolite facies</td>
<td>1944.25–1940.80 m</td>
<td>W4-W5</td>
<td>Pl reduced by 50% relative to Qz in protolith</td>
<td>Kln ≫ I + M</td>
<td>Intensified dissolution of Pl and oxidation of Bt. Moderate dissolution of Pl. Pervasive kaolinitization of Pl.</td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td>14.3–15.5 m</td>
<td>–</td>
<td>Close to total disappearance of Pl.</td>
<td>Kln > Gbs > Vrm</td>
<td>Organic matter and pedogenic features. Residual Qz and Kln.</td>
<td>Low por. and perm. due to domination of clays and organic matter</td>
</tr>
<tr>
<td>Sparta Altered coherent rock facies</td>
<td>–2–0 m</td>
<td>W1–W3</td>
<td>Similar to protolith composition</td>
<td>I-S > Chl > I + M > Kln</td>
<td>Incipient dissolution of Pl and minor oxidation of Bt to hydrobiotite.</td>
<td>Por. and perm. controlled by macrofractures. Intracrystalline microporosity. Interconnected por. and mesofractures after Pl. dissolution. Voids after Pl. dissolution. Clays reduce perm.</td>
</tr>
<tr>
<td>Saprock facies</td>
<td>0–5.5 m</td>
<td>W2 (corestones–W4</td>
<td>Reduction of Pl between corestones and decreasing Kfs.</td>
<td>Kln > I + M > I-S</td>
<td>Intensified Pl dissolution and pseudo. kaolinitization of Bt. Pervasive dissolution of Pl. Pseudomorph. transformation of Pl to Kln and Gbs.</td>
<td></td>
</tr>
<tr>
<td>Saprolite facies</td>
<td>5.5–11.2 m</td>
<td>W4-W5</td>
<td>Sudden reduction of Pl and increasing Kfs.</td>
<td>Kln ≫ I + M > Vrm and hydr. Bt > Gbs</td>
<td>Pervasive dissolution of Pl. Pseudomorph. transformation of Bt to Kln and Gbs.</td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td>11.2–12.5 m</td>
<td>–</td>
<td>Close to total disappearance of Pl.</td>
<td>Kln > I + M > Vrm</td>
<td>Organic matter and pedogenic features. Residual Qz and Kln.</td>
<td>Low por. and perm. due to domination of clays and organic matter</td>
</tr>
</tbody>
</table>

Abbreviations (Whitney and Evans, 2010): Qz = quartz, Pl = plagioclase, Bt = biotite, Kfs = K-feldspar, Kln = kaolinite, I-S = interstratified illite-smectite, I + M = illite and fine-grained mica, Vrm = vermiculite, hydr. Bt = hydrobiotite, Gbs = gibbsite, por. = porosity, perm. = permeability, pseudom. = pseudomorph.

(Stangvik, 2015). Biotite is pseudomorphically transformed to kaolinite, in some cases to gibbsite, through stages of hydrobiotite and vermiculite. A difference between the two Georgia profiles is the apparent reduction of K-feldspar in the saprolite facies in the Sparta profile, which was not observed in the Keystone Blue section (Fig. 8).

The original granite structure is lost when moving up into the red-dish and mottled soil horizon. In the soil horizons organic matter and pedogenic features, such as ped and clay cutans, were commonly observed under the microscope, and the mineralogy is dominated by residual quartz and kaolinitic clay (Table 2, Fig. 4A–B).

4.3. Ivö Klack (Sweden)

Ivö Klack is located in Scania (southern Sweden), north of the Sorgenfrei Tornquist zone that defines the border between the stable Fennoscandian-Baltic Shield and the metastable Danish-Polish Trough (Liboriussen et al., 1987) (Fig. 2B). On Ivö Klack, deep weathering of crystalline basement rocks occurred in humid subtropical–tropical conditions from late Triassic to late Cretaceous times (Gilg et al., 2013; Naqvi, 2013; Oberhardt, 2013). Deep weathering and kaolinitization of the bedrock occurred before partial erosion and late Cretaceous transgression (Lidmar-Bergström et al., 1997; Surløy and Sorensen, 2010). The hill of Ivö Klack is dominated by the Vånga Granite, a medium–coarse grained foliated and migmatised granite (Lundegårdh, 1978) (Table 1).

The residual paleoregolith investigated at Ivö Klack is a 2.8 m profile through a jointed corestone from the saprock–saprolite facies (Fig. 4C). Weathering along joints within the corestone resulted in a subset of smaller corestones (W2–W3) separated by saprolic intervals (W4–W5) (Table 2, Fig. 4C). The central parts of the corestone are classified as altered coherent rock facies (W2), with a gradual decay of mechanical rock strength outwards. The degree of weathering is reflected in the dissolution of sericitized plagioclase demonstrated by the low Pl/(Qz + Pl) ratios (Fig. 4C) and the clustering of samples close to the Qz–Kfs join on the Qz–Pl–Kfs diagram (Fig. 8). The rock composition within joints is nearly depleted in plagioclase, but the plagioclase content gradually increases towards the center of the preserved corestone (Fig. 4C). Perithetic feldspars demonstrate preferential dissolution of
albitic exsolution lamellas (Fig. 6F) (Naqvi, 2013). Biotite alteration is characterized by opening of wafers perpendicular to cleavage and pseudomorphous transformation to kaolinite.

The clay mineralogy is dominated by kaolin, between 70 and 96 wt%, with subordinate I + M, R0 I-S, and gibbsite (Table 2, Fig. 4C). Within the most weathered areas the amounts of kaolin reach up to 16 wt% of the total rock, compared to < 1 wt% in central parts of corestones (Fig. 4C). Kaolin was observed within dissolution voids in plagioclase, and displays up to 20 μm thick vermicular kaolinite crystals and tubular needles resembling halloysite. Intergranular porosity is mainly created by dissolution of plagioclase, and intragranular porosity from dissolution of exsolution lamellas in K-feldspar (Fig. 6F). In the saprolite facies, voids after feldspar dissolution and mesofractures are commonly occupied by kaolinitic clays (Table 2, Fig. 6).

5. Discussion

The two paleoregolith profiles (wells 16/3-4 and 16/3-6) from the eastern part of the Utsira High (Fig. 1C) and surface paleoregoliths from Ivö Klack, Sweden and Georgia, USA are subdivided into weathering facies that display similar macroscopic (Fig. 5), mineralogical (Figs. 3, 4 and 8) and micromorphological (Figs. 6 and 7) alteration features (Table 2).

The altered coherent facies is recognized in cores and outcrops by the low reduction of mechanical strength (W1–W2). In addition, Pl/(Pl + Qz) ratios display only minor deviance from protolith composition, and clay mineralogy is dominated by R0 I-S and I + M over kaolinite (Table 2). Reservoir properties in the altered coherent rock facies are mainly controlled by joints (Fig. 5B) and microfractures (Dewandel et al., 2006; Stober and Bucher, 2007), likely created by extrinsic stresses related to local tectonism or erosion of overburden, and by intrinsic stresses induced by pore fluid pressures or by thermal cooling and contraction of the pluton (Bergbauer and Martel, 1999; Nelson et al., 2000; Cuong and Warren, 2009; Graham et al., 2010). Unweathered granite generally displays low porosity (< 1%) in the rock mass between joints (Graham et al., 2010), but when the granitic pluton reaches the Critical Zone, the joints and microfractures act as pathways for meteoric water and thus commence the conversion of low-porosity rock to regolith.
In the present study, intragranular dissolution of calcic cores of zoned plagioclase crystals was observed as the first formation of porosity (Figs. 6A–B and 7A–B). Incipient oxidation of iron-bearing minerals in the lower parts of the paleoregolith profiles is indicated by the reddish color along exfoliation planes in the surface paleoregoliths in Georgia. Interstratified biotite-vermiculite is an early intermediate phase in the transformation of biotite to kaolinite (Rebertus et al., 1986; Kogure and Murakami, 1996) and was identified at the base of the saprock profile in the Sparta quarry, and in the altered coherent rock facies in 16/3-6. Spheroidal fracturing, induced by biotite expansion after Fe-oxidation (Buss et al., 2008) and vermiculization (Le Pera and Sorriso-Valvo, 2000; Fletcher et al., 2006; Scarciglia et al., 2007; Bazilevskaya et al., 2013; Parizek and Girty, 2014; Webb and Girty, 2016) has been reported to be one of the earliest reactions responsible for porosity developments in crystalline rocks by weathering (Bazilevskaya et al., 2015).

The saprock facies fabric is recognized in the field by rounded boulders separated by thin layers of saprolitic material (Table 2). In cores from well 16/3-4, fracture planes in the saprock facies are rounded and the interval possibly represents a section through corestones (Fig. 5C) similar to what was observed in outcrops. The observed vertical zonation of clay minerals in 16/3-4, from coexisting R0 I-S and kaolinite in (Navarre-Sitchler et al., 2015). In the present study, intragranular dissolution of calcic cores of zoned plagioclase crystals was observed as the first formation of porosity (Figs. 6A–B and 7A–B). Incipient oxidation of iron-bearing minerals in the lower parts of the paleoregolith profiles is indicated by the reddish color along exfoliation planes in the surface paleoregoliths in Georgia. Interstratified biotite-vermiculite is an early intermediate phase in the transformation of biotite to kaolinite (Rebertus et al., 1986; Kogure and Murakami, 1996) and was identified at the base of the saprock profile in the Sparta quarry, and in the altered coherent rock facies in 16/3-6. Spheroidal fracturing, induced by biotite expansion after Fe-oxidation (Buss et al., 2008) and vermiculization (Le Pera and Sorriso-Valvo, 2000; Fletcher et al., 2006; Scarciglia et al., 2007; Bazilevskaya et al., 2013; Parizek and Girty, 2014; Webb and Girty, 2016) has been reported to be one of the earliest reactions responsible for porosity developments in crystalline rocks by weathering (Bazilevskaya et al., 2015).

The saprock facies fabric is recognized in the field by rounded boulders separated by thin layers of saprolitic material (Table 2). In cores from well 16/3-4, fracture planes in the saprock facies are rounded and the interval possibly represents a section through corestones (Fig. 5C) similar to what was observed in outcrops. The observed vertical zonation of clay minerals in 16/3-4, from coexisting R0 I-S and kaolinite in
the saprock towards increased kaolinization in the saprolite (Fig. 3) is comparable to observations from the Sparta profile (Fig. 4B) and through the corestone section from Ivö Klack (Fig. 4C). Although porosity within residual corestones may be extremely low (Buss et al., 2008), the density of microcracks and intragranular weathering of plagioclase crystals increase towards the rindlet zone of the corestones and towards the saprolite (Buss et al., 2008), and thus enhance reservoir quality.

In the transition from the saprock facies to saprolite facies in 16/3-4 the intensified chemical attack on plagioclase and biotite, and concomitant precipitation of kaolinite are similar to the observations from the studied outcrops (Figs. 6E–F, 7E–F and 8), but the disappearance of plagioclase is more gradual in the deeply buried paleoregolith profile (Fig. 3) than in the surface paleoregolith in Georgia (Schroeder et al., 1997) (Fig. 4A–B). In the saprock and saprolite facies, porosity increases mainly as a result of plagioclase dissolution (Meunier, 2005) (Figs. 6C–D, 7C–D). Mesofractures that developed in the saprock facies contribute to improved connectivity between voids (Figs. 6C–D), but in the saprolite facies increased precipitation of clays within pores and mesofractures likely has a destructive effect on the permeability (Figs. 6E and 7E). Acworth (1987) has reported a similar reduction of permeability in saprolite zones with massive accumulation of clays. Furthermore, in a study of ground-water flow in sedimentary saprolites, Driese et al. (2001) found that the accumulation of illuviated clays in pores and fractures created a low-hydraulic-conductivity barrier. In addition, the decay of
features in well 16/3-4 and 16/3-6 on the Avaldsnes high were, in con-
derstratification of secondary phases (phyllosilicates and hydroxides) occurs in the Critical Zone through
water-rock interactions as a function of time (White and Brantley, 2003). Gibbsite and kaolinite dominate in well-drained systems with high availability of water and strong leaching, whilst illite-smectite is more common in poorly-drained systems with close to stagnant conditions (Velde and Meunier, 2008). In tropical–subtropical regions the regolith profile may display a vertical clay mineral zonation. The solution waters are generally neutralized downwards in the profile suggesting a zonation from kaolin clays and gibbsite in the saprolite and saprock facies to 2:1 clay minerals (such as smectite) in altered coherent rock facies (Nahon, 1991; Nesbitt et al., 1997; Eggleton et al., 2008), which is comparable to the results in the present study.

The two deeply buried paleoregolith profiles from the Utsira High experienced partial truncation of the original weathering profile before burial in the Upper Jurassic. In well 16/3-4 the soil horizons were eroded and shallow marine sandstones of Upper Jurassic age (Riber et al., 2015) were deposited on the poorly-drained facies (Fig. 9). Well 16/3-6 was more deeply truncated and only the altered coherent rock facies is preserved below the Upper Jurassic shallow marine sandstone cover (Fig. 9). The poorer preservation of the paleoregolith observed in 16/3-6 compared to 16/3-4 may have been a result of it being positioned farther inland (Thiry et al., 1999; Sheldon and Tabor, 2009) (Fig. 9), but local variations in the development and preservation of weathering mantles are expected (Meunier, 2005).

During transgression and passive thermal subsidence of the Utsira High from the Jurassic, diagenetic alteration of the original weathering mantle most likely took place. The degree of diagenetic chemical alteration in the deeply buried paleoregolith profiles in this study is believed to be minor, but is still uncertain. Riber et al. (2016) identified severe postweathering alteration including precipitation of interstratified serpentine-chlorite in the paleoregolith interval in well 16/1-15 on the western side of the Utsira High (Fig. 1C). The alteration features in well 16/3-4 and 16/3-6 on the Avaldsnes high were, in contrast, interpreted to mainly have been inherited from the subaerial weathering phase and that the reservoir properties of the regolith were created before burial (Riber et al., 2016). The pyrite inclusions observed within altered biotite in both 16/3-4 and 16/3-6, however, are likely the result of interactions with reducing pore fluids during early diagenetic alteration (Wright, 1986; Claeyts and Mount, 1991; Riber et al., 2016). Gibbsite was observed in the surface paleoregolith in Georgia and Ivö Klack (Table 2) but not in the deeply buried weathering sections from the Utsira High. Although gibbsite is common in soils, the mineral is less commonly observed in ancient sediments (Curtis and Spears, 1971). If gibbsite was present in the original weathering profile on the Utsira High, the narrow field of stability for gibbsite (Nesbitt and Young, 1989) makes it possible that during burial, increased activity of silica in the pore-space resulted in reaction of gibbsite with soluble silica to form stable kaolinite (Curtis and Spears, 1971; Weaver, 1989; Liivamägi et al., 2015). If any halloysite had been present in the original weathering profiles from the Utsira High, it is likely that the mineral had converted to the more stable phase of kaolinite with ageing or intensified degrees of weathering (Huang, 1974; Tsuzuki and Kawabe, 1983; Dong, 1998; Papoulis et al., 2004; Joussein et al., 2005), or, alternatively, dehydration and possible conversion to kaolinite may have occurred during burial (Huang, 1974) of the Utsira High profiles to about 2 km and bottom hole temperatures of >84 °C (www.npd.no). In addition, mechanical compaction during burial is not discussed in the present paper, but likely had negative impact on reservoir quality (Ramm, 1992; Storvoll et al., 2005) in the deeply buried paleoregolith profiles.

6. Conclusion

The method presented here has successfully been applied to subdivide deeply buried paleoregolith profiles from the Utsira High, Norwegian North Sea, into specific weathering facies by comparing macroscopic, mineralogical and micromorphological alteration features with surface paleoregoliths from Georgia, USA and Ivö Klack, Sweden. The results show that chemical alteration of crystalline rocks in the Critical Zone was responsible for both the formation and the destruction of reservoir properties in the studied sections. The three weathering facies display contrasting type and degree of alteration that exerts control on the overall reservoir quality of the paleoregolith. In the altered coherent rock facies, reservoir properties are mainly related to previously formed joints. Initial porosity developments in the altered coherent rock facies are likely the result of early alteration and expansion of biotite and incipient plagioclase alteration. In the saprock facies, plagioclase dissolution becomes the dominant porosity forming process and the growth of mesostructures enhance the connectivity between dissolution voids. As mineral dissolution intensifies in the saprolite facies, the increased precipitation of kaolinitic clays clogs voids and mesostructures. In addition, the decay of mechanical properties result in the collapse of the rock structure and thus the overall reservoir quality is reduced.

By comparing the deeply buried paleoregolith profile with complete surface weathering sections from Georgia, it is interpreted that deep erosion of the original regolith and soil horizons on the Utsira High occurred before and during transgression in Upper Jurassic (Fig. 9A–B). In well 16/3-4 all three weathering facies are recognized but in the nearby well, 16/3-6, a deeper truncation have taken place and only the altered coherent rock facies is preserved below Upper Jurassic sandstones (Fig. 9C).

The application of outcrop studies has been demonstrated to increase the understanding of how reservoir properties were formed and destroyed in deeply buried paleoregolith profiles during subaerial exposure. The results will help when reconstructing erosional patterns and predicting areas with better reservoir potential in subsurface paleoregoliths, but caution must be applied to the impact of physical and chemical compaction on reservoir quality during burial.

Acknowledgements

This study has been funded by Lundin Norway AS. Access to the cores presented in this study has kindly been granted by Lundin Norway AS. XRD and SEM analyses at the University of Oslo were carried out under the kind supervision of Maarten Aerts and Berit Løken Berg. Support
from late Jurassic until present. C) Differences in depth of truncation may explain the variation in preservation of weathering facies in 16/3-4 and 16/3-6.

to PAS came from the NSF-CZO program. Thanks to Bobby Harrison for allowing access to the Keystone Bluff quarry and to Jeff Sanders for your hospitality when we visited the Sparta quarry. Thanks to Adrian Read for improving the language of the paper. We are grateful for valuable improvements to earlier versions of this paper proposed by Gary Stinchcombe and three anonymous reviewers.

References

