
STEPHEN GUGGENHEIM1,*, DEREK C. BAIN2, FAIZA BERGAYA3, MARIA F. BRIGATTI4, VICTOR A. DRTS5, DENNIS D. EBERL (Guest member)6, MILTON L. L. FORMOSO7, EMILIO GALÁN8, RICHARD J. MERRIMAN (Guest member)9, DONALD R. PEACOR (Guest member)10, HELGE STANJEK11 AND TAKASHI WATANABE12

1 Chairman, AIPEA Nomenclature Committee, Department of Earth and Environmental Sciences, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
2 Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
3 Centre de Recherche de la Matière Divisée (CRMD), National Centre of Scientific Research, University of Orléans, 1b Rue de la Ferollerie, 45 071 Orléans Cedex 2, France
4 Department of Earth Sciences, Modena and Reggio Emilia University, Largo S. Eufemia 19, I-41100, Modena, Italy
5 Geological Institute of the Russian Academy of Science, 7 Pyzerskii Per, Moscow J-17 Russia
6 US Geological Survey, 3215 Marine St., Boulder, Colorado, 80303, USA
7 9500, Ave Bento Gonçalves, Campus do Vale, Institute of Geosciences, University Federal do Rio Grande do Sul, Porto Alegre - RS - Brazil, CEP - 91540-000
8 Department of Crystallography and Minerals, Facultad de Química Université, Sevilla, Spain
9 British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
10 Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan, 48109, USA
11 Lehrstuhl Für Bodenkunde, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
12 Joetsu University of Education, Joetsu Niigata 943, Japan

Key Words—Amorphous, Ærkai Index, Crystallinity, Crystallinity Index, Disorder, Electron Amorphous, Hinckley Index, Kübler Index, Near Amorphous, Nomenclature, Order, X-ray Amorphous.

INTRODUCTION

The purpose of this report is to describe the appropriate use of indices relating to crystallinity, such as the ‘crystallinity index’, the ‘Hinckley index’, the ‘Kübler index’, and the ‘Ærkai index’. A ‘crystalline’ solid is defined as a solid consisting of atoms, ions or molecules packed together in a periodic arrangement. A ‘crystallinity index’ is purported to be a measure of crystallinity, although there is uncertainty about what this means (see below). This report discusses briefly the nature of order, disorder and crystallinity in phyllosilicates and discusses why the use of a ‘crystallinity index’ should be avoided. If possible, it is suggested that indices be referred to using the name of the author who originally described the parameter, e.g. ‘Hinckley index’ or ‘Kübler index’, or in honor of a researcher who investigated the importance of the parameter extensively, e.g. ‘Ærkai index’.

In contrast to a crystalline solid, an ‘amorphous’ solid is one in which the constituent components are arranged randomly. However, many variations occur between the two extremes of crystalline vs. amorphous. For example, one type of amorphous material might consist simply of atoms showing no order and no periodicity. Alternatively, another amorphous material may consist of atoms arranged, for example, as groups of tetrahedra (i.e. limited order) with each group displaced or rotated (e.g. without periodicity) relative to another. Thus, this latter material is nearly entirely amorphous, but differs from the first. Likewise, disturbance of order and periodicity may occur in crystalline materials. The terms ‘order’ and ‘disorder’ refer to the collective nature or degree of such disturbances. Although seemingly simple notions, ‘crystalline’ and ‘amorphous’ are complex concepts.

Crystalline substances may show a periodic internal structure based on direction. For example, two-dimensional periodicity is common in phyllosilicates where two adjacent sheets or layers must mesh. For example, in serpentine, the 1:1 layer must match the periodicity of adjacent layers so that hydrogen bonding is optimized to link the layers. Adjacent layers may be offset by zero shifts, ±a/3 shifts, or ±b/3 shifts, but hydrogen bonding is still maintained and two-dimensional periodicity within each layer remains. Most materials (not necessarily clays, however), exhibit three-dimensional periodicity. Periodicity may be related also to domains, where short-range or long-range order may exist within domain boundaries.

Many forms of order and disorder occur in phyllosilicates, including order-disorder in stacking sequences, isomorphous substitutional order-disorder where various ions or vacancies occur in certain coordination sites, and
order-disorder in the arrangement of material in the interlayer. Phases involving interstratifications in phyllosilicates are common, with order-disorder in stacking of two or more kinds of layers. In addition, mosaic character, interstitial impurities, thermal or positional displacement, dislocations and other defects may also be related to order-disorder.

In practice, ‘crystallinity’ is defined as the degree of perfection of translational periodicity as determined by some experimental method. Diffraction techniques are the common methodologies to ascertain periodicity, but different diffraction techniques often do not convey the same information. For example, because of the different wavelengths and imaging capabilities of X-ray and electron-diffraction methods, X-ray diffraction (XRD) experiments may suggest that the periodicity of the material in the bulk sample may be non-existent, whereas electron diffraction may indicate, for example, that the atomic arrangements within finely-divided particles may be periodic. In addition to the choice of radiation, apparent crystallinity (or apparent periodicity) may be related also to sample preparation or experimental technique. For example, ‘two-line’ ferrihydrite is often considered amorphous or nearly amorphous because of the use of powder XRD patterns made with an improper choice of counting time and radiation. When scanned properly, however, this material may display more than six powder-diffraction peaks. As shown by accurate XRD and selected-area electron-diffraction data, both two-line and six-line ferrihydrites exist (e.g. Drits et al., 1993). Similarly, ‘crystallinity’ appears to decrease in powder XRD experiments of oriented clay-particle aggregates when the clay particles are partially or poorly oriented. Thus, the nature of the translational periodicity and the method of sample preparation and measurement are essential aspects that must be considered in any practical procedure to describe crystallinity.

Finally, note that this report is not comprehensive in that it considers only limited aspects of ‘crystallinity’ and does not consider environmental factors affecting disorder (e.g. mechanical actions), industrial implications, sample preparation methodologies, etc. The purpose of this report, as given above, is to consider some crystallographic aspects of crystallinity, such that appropriate nomenclature can be applied to this concept.

THE TERM ‘CRYSTALLINITY’

The term ‘crystallinity’ is qualitative and depends on the type of order (or disorder) as described above, the dimensional nature of the periodicity present, and the technique involved in its measurement. For phyllosilicates, which are low-symmetry materials characterized by strongly anisotropic structures, widely varying chemical compositions, and commonly having either irregular or regular interstratifications of various structures, the meaning of ‘crystallinity’ is ambiguous. Furthermore, the apparent ‘crystallinity’ is strongly dependent on crystallographic direction. Despite this, ‘crystallinity’ indices have been proposed for clay minerals for the last forty years, some of which have been widely accepted and applied worldwide.

HISTORICAL BACKGROUND AND COMMENTS

Hinckley (1963) attempted to define a ‘crystallinity’ index to quantify ‘crystallinity’ by describing how characteristics of powder XRD peaks may change among samples of kaolinite. Hinckley (1963) described a procedure to measure the maxima of the 11/ and 02/ powder-diffraction peaks. Brindley (1980, p. 152) noted that the measurement gives an indication of the “clarity of the two peaks, but it is not related to true peak intensities”. Plançon and Zacharie (1990) noted that the procedure is incapable of quantifying the diversity of defect structures in kaolinite samples. The Clay Minerals Society Nomenclature Committee (R. Giese, pers. comm., 1998) suggested that the Hinckley index differentiates kaolinite samples containing “low” amounts of defects (‘low-defect kaolinite’) vs. “high” amounts of defects (‘high-defect kaolinite’). Clearly, however, whatever the Hinckley index measures, the index is not a quantitative measure of ‘crystallinity’.

Weaver (1960) was the first to realize that regular changes in shape of the first, 10 Å basal reflection of illite is a function of burial (increasing temperature and pressure). The “sharpness ratio” of Weaver (the ‘Weaver index’) is the ratio of intensities measured at the peak maximum (near 10 Å) and at 10.5 Å. The Weaver index increases with increasing depth in sedimentary basins. Kübler (1964) differentiated the “anchimetamorphic zone” (the “anchizonal” of Dunoyer de Segonzac (1969) and others) to identify the transition between the dry-gas zone and the zone of unproductive (“overmature”) rocks for hydrocarbon exploration. Kübler (1964, 1967) devised an illite “crystallinity” index (often abbreviated as IC) that relies on the full width at half maximum (FWHM) of the first, 10 Å XRD powder-diffraction peak of illite/muscovite, as measured on the ~2 μm size-fraction of the air-dried clay using CuKα radiation. The Kübler index, expressed as small changes in the Bragg angle, Δ2θ, was introduced as a method of identifying the diagenesis-anchizone and anchizone-epizone metamorphic boundaries. Standardization of sample preparation, instrumental measuring conditions, and interlaboratory calibration are needed to do this (Kisch, 1990, 1991; Warr and Rice, 1994). Other crystallinity indices have been proposed for illite, including those of Weber (1972), Flehmig (1973) and Watanabe (1988), although these have been found to be less convenient or not as reproducible.

Although the Kübler index proved to be an easy-to-use measure of grade of diagenesis and incipient
metamorphism of clastic rocks, the use of the term ‘illite crystallinity’ is unfortunate, because it also involves illite-smectite and possibly white K-rich mica interstratifications and consequently, it is not a direct measure of the ‘crystallinity’. Many authors use the term ‘crystallinity’ within quotation marks (e.g. Kisch, 1983; Frey, 1987), although Kübler (1984) preferred the term “largeur de Scherrer” (LS) or “Scherrer width” (SW) instead of ‘illite crystallinity’.

The FWHM values of chlorite basal reflections have also been used as measures of ‘chlorite crystallinity’ (see reviews by Frey, 1987 and Árkai et al., 1995). For the reaction series smectite-muscovite and smectite-chlorite, Árkai (1991) correlated the “chlorite crystallinity” indices measured on the 14 Å and 7 Å basal reflections with the Kübler index scale, metabasite mineral facies, coal rank and other metamorphic grade-indicating characteristics.

Investigations have shown that the Kübler index is influenced by the mean size of crystal domains that scatter X-rays coherently (Weber et al., 1976; Dunoyer de Segonzac and Bernoulli, 1976; Árkai and Tóth, 1983; Eberl and Velde, 1989; Drits et al., 1997, etc.). Crystallite size, especially at lower (diagenetic) grades, seems to be strongly affected by the amount of swelling of interstratified components (e.g. Eberl and Velde, 1989). Lattice strain may also influence the Kübler index, although it is a relatively minor contribution at these low-θ angles and the percentage strain in illite-muscovite crystallites tends to be small (Árkai and Tóth, 1983; Árkai et al., 1996). Jaboyedoff et al. (2001) suggested that the index is related to the mean number of layers and the variance of the distribution of the number of layers in the coherent scattering domain, the mean percentage of smectite layers present, the Reichweite (a parameter describing layer-stacking order), and instrumental parameters. Using TEM techniques, Merriman et al. (1990, 1995) showed that the Kübler index is largely controlled by the thickness of illite-muscovite crystallites.

Data from many sources (e.g. Eberl et al., 1987, 1990; Merriman et al., 1990, 1995; Šrodon et al., 1992; Árkai et al., 1996, 2000; Jiang et al., 1997; Li et al., 1998; Warr and Nieto, 1998; Essene and Peacor, 1995) suggest that phyllosilicates in diagenetic and low-temperature metamorphism can be described by one-dimensional diffraction data as in the case of the Kübler index. Thus, this index is not a true measure of ‘crystallinity’ because crystallinity is complex and cannot necessarily be represented by a single datum. In fact, deviations from perfect structure have specific diffraction effects that may not be measurable by documenting variations of width of a single peak; for example, effects involving diffuse scattering between peaks.

RECOMMENDATIONS

(1) It is the recommendation of this committee that the term ‘crystallinity index’ should not be used. However, it is appropriate to refer to a ‘Hinckley index’ or ‘Kübler index’, after those authors who initially described the parameters, or the ‘Árkai index’ for calibrated FWHM values of chlorite, after the researcher (Prof. Peter Árkai, Hungarian Academy of Sciences) who described the importance of this parameter extensively. In this way, the term ‘crystallinity’ is discriminated from parameters that may not describe all aspects of crystallinity. However, vast amounts of data exist based on ‘crystallinity’ or ‘crystallinity indices’ and reference to earlier work may be awkward without the use of these terms. Thus, limited use may be made of the term ‘crystallinity’, within quotation marks, only if its use is unavoidable.

(2) Because there is a continuum between phases that are amorphous and crystalline, clarifying the term ‘amorphous’ is important. The term ‘amorphous’ must be accompanied by a description of the diffraction effects or other properties that suggest the phase is, in fact, ‘amorphous’. In addition, a description of the sample-preparation techniques and experimental conditions must be reported.

After the appropriate descriptions as discussed above are given, adjectival modifiers may be appropriate to describe amorphous, such as ‘near amorphous’, because this may be a better way to designate or describe the phase. It is appropriate also to use ‘X-ray amorphous’ to describe the amorphous state as determined by XRD techniques, or by analogy, ‘electron amorphous’ if determined by electron diffraction.

REFERENCES

